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NOMENCIATURE

Deacrigtion
Dilatational wave velocity

Distortional vave velocity

Representative discontinuity dimension
(hole diameter in this case

Young's modulus

Thickness of shear plate

Stress concentration factor

Time

"Primacord" bwrning rete

Impact velocity of shear plate
Width of model

Angle of biased adge of model
Meximum (peak pulse) strain
Nominal (peak pulse) strain
Nominal (peak pulse)strein corrected for atteruation
Wave length of dilatational pulse
Peisson's ratio

Mass density

Maximum (peak pulse) stress
Nominal (peak pulse) stress

Period of dilatational pulse
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INTRODUCTION

Many studies have been made of stress distributions in the vicinity of
discontinuities such as holes and notches. These studies, both theoretical
and experimental, have provided a great deal of information on the dbehavior
of many of the more common discontinuities under static loading. The usual
design procedure for obtaining the meximum stresses associated with such
discontinuities has been primorily a matter of applying the pertinent stress
concentration factors to the nominal stresses obtained from the simple
strength of materials formulae.

This design method has been generally adequate, and even conservetive in
meny instances, for static loading considerations. When dynsmic loads are
involved, the usual recourse has been to follow the same procedure but to
increase the margin of safety to allow for the uncertainty of the actual
dynamic stress. Obviously, this approach will lead to an efficient design
only by pure chance.

The purpose of this study then is to investigate some of the more gen-
eral aspects of the behavior of discontinuities under dynamic loads. Spe-~
¢ifically, the geometry considered here is a thin plate containing a central
circular hole; and the loading 1s of a chort duration, discrete pulse nature.
The problem is approached experimentally using explosively induced stress
pulses in thin plastic plates.

Single, discrete, compression pulses are propagated longitudinally
through plates containing the discontinuities. The emphasis is directed
toward stress pulses having durations that are much shorter than ihe funda-
mental dilatational period of the plates.

Some previous experimental work in this area has been undertaken by
Durelli, et al.l,? Employing dynamic photoelastic techniques the same prob-
lem was investigated. In these studies, the pulse durations were several
times longer than the period of the plates and, accordingly, no apparent
dynamic effect was noted.

In the early p}iases of this program an attempt was made to generate
short duration stress pulses by the use of a spring~propelled shear plate
impacting the edge of a rectangular plate containing a central circular hole
(see Figure 1). The alignment in this scheme was a highly critical factor,
and the pulse lengths obtained were about five times the diameter of the
holes. Again, the stress concentration factor observed was essentially equal
to the static value.

Pao® has studied the problem of the vibratory loading of an infinite
plate containing a central circular hole. In this theoretical approach it
i1s noted that, when the wavelength of the vibration is of the same order of
magnitude as the diameter of the hole, the maximum strcss at the hole varies
with the forecing frequency.
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FOR{ULATION

Dynamic Stress Concentration Factor

In the usual terminology for the case of plane stress, the stress con-
centration factor is expressed as the ratio of maximum to nominal stresses.*

k = cma.x (l)
nom

While this is based on static reasoning, it may be extended to include

dynamic considerations with no loss of generality. Assuming the attenuation
of the pulse to be insignificant, if %om is defined as the peek pulse stress

several wavelengths upstream of the discontinuity, and o,y is defined as the
peak pulse stress at the discontinuity, k will still portray the effect of
the discontinuity.

* Onom 18 based on the net area at the discontinuity in both the static and
dynamic sense, i.e., the effect of the absence of the material at the discon-
tinuity is considered, but the associated nonuniform stress distribution is

not. b



The configurations considered here are such that at the points where
both nom and o nax OCCUT» & state of unixial stress exists. In the nomi-

nal stress field,during the time of initial pulse passage, there is no
stress perpendicular to the direction of the pulse propagation. At the edge
of the hole there can be no radial stress,so that there in a uniaxial
stress in the tangential direction.

Therefore, the stress concentration factor can be written in terms of
the nominal and maximum strains.

k = emB.X . (2)
nom

Here the same restrictions regarding the definitions of the dymamic
maximum and nominal stresses must be observed.

Pulse Frequency Parameter
Since an effect of pulse duration, or conversely pulse frequency, on

the response at & discontinulty is suggested, a dependency is implied of the
form:

x=1(%)- (3)
e — Here d is a representative geo-
~""] metric dimension of the discontinuity,
STRESS PULSE — the hole diemeter,in this case; and A
is the wavelength of the stress pulse.
A Figure 2 illustrates these dimensions
for a plane compression pulse propaga-
ting longitudinally along a plate with
¢ a central circular hole.
- l The pulse wavelength is a func~
i tion of both the material of the mem-
ber and the duration of the applied
load.
¥ o A= C1T (l")
L T The dilatational wave velocity
Figure 2. PROPAGATION OF STRESS PULSE (vhich is dependent solely on the
IN FINITE PLATE CONTAINING CENTRAL material) is represented by c;, and
CIRCULAR HOLE the loading duration by 7.



T™is study has been restricted to the effect of the dilatational (com-
pression) pulse. Since there is also a distortional (shear) pulse associa-
ted with dynamic loeding, attention must be directed to that portion of the
member which is unaffected by the shear pulse (at least during the passage
of the initial compression pulse). This is accomplished by observing only
the initial response of the menber at locations relatively far removed from
the area at which the load is applied. In effect, the dilatational pulse
is allowed sufficient room to "outrun" the distortional pulse, Inspection
of Equations 5, below, will show that the dilatational velocity (¢;) is always
greater than the distortional velocity (cg).

E
cy = -
e
) E
o -.\ 2o(2+v) (3)

EXPERIMENTAL TECHNIQUE

Models

Effort was directed toward obtaining pulse frequency parameters varying
from ebout 1.0 to 5.0. However, since it is impractical to vary the pulse

length, the variation of the % parameter was acceaplished by changing the physi-
cal dimension, d. The significant geometric parameters were kept constant
by scaling other pertinent model dimensions in the same proportion as d.

The models were fabricated from thin (1/4-inch Plexiglas) plastic
plates. The use of plastic is desirable from several precepts. First, the
elastic wave velocities in plastics are considerably lower than in most
metals. Thus, it is possible to achieve desirable (1.e., relatively large)

d values without having to resort to large and, therefore, unwieldy models.

Second, plastics possess low elastic moduli so that small loads will produce
strains sufficiently large for accurate measurement.

The plates were generally in the form of trapezoids. The over-all dim-
ensions varied from about 4" x 10" to 36" x 60" in order to bracket a suf-
ficient range of the pulse frequency parameter. The discontinuities con-
sidered in the initial phase of this study were central circular holes
varying from 1.0 to 9.0 inch diameters.

6=



loading

Lengths of Primacord detonating fuse were placed along the biased edge
of the models as shown in Figure 3. Detonation of the fuse was accomplished
by initiation of a No. 6 blasting cap at the upper end of the Primacord.

The burning rate of the Primascord is approximately 250,000 inches per second;
and the burning duration, at a point, sbout 20 microseconds.

SIN O = cua

~

Figure 3. LOADING TECHNIQUE

This technique, which is attributed to Christie ,‘ imparts sharp,
reproducible pulses, of about 20 microseconds duration,to the plate. Refer-
ring again to Figure 3, if the angle &, between the bias and the horizontal,
is set such that sin a = S;,-‘- (where v is the burning rate of the Primacord),
it is possible to obtain a short duration pulse which propagates longitudi-
nally down the model.

-T=-



Same initial experimentation was necessary to determine the correct
value of ¢¢.* This was due to the variability of Young's modulus with strain
rate which, in turn, affects the wave velocities. Essentially, the velocity
of the dilatational wave was determined by measuring the time delay of its
arrival at two points on a longitudinal line; and the angle, a, adjusted
accordingly. To check the angle, the arrival of the pulse at two points on
the same transverse line, but at opposite edges of the plate, was noted.

The pulses generated by this method were quite reproducible, having
durations of 20 microseconds, which in Plexiglas correspond to a wavelength
of 1.9 inches. Although the amplitudes of pulses on different models were
not identical (due probably to the variation of the explosive loading in the
Primacord), the method faithfully reproduced pulses of the same duration and
general shape. Figure 4 is a tracing of a typical oscilloscope record show-
ing the pulse shape obtained by this loading technique.

12000 £4_I7
in

(LY

md TR 20 p SEC

t

Figure 4. TYPICAL STRAIN PULSE

¥For Plexiglas, @ 1s approximately 25 degrees. If steel or aluminum were
employed as the model material, @ would have to be ebout T5 degrees, which
would have been quite awkward. This,then,is another reason for employing
a plastic model.

-8-



Instrunentation

The instrumentation employed in this study consisted cof l/lG-inch foil
strain gages, a trigger gage, suitable ballast circuits, and dual beam
oscilloscopes. This is shown schematically in Figure 5.

:
TRIGGER
CiRCUIT
o 0

TEKTRON I X r—
MOD. 551 DUAL BEAM
WITH 2 TYPE L AMP.

,;:z..
‘ I {
yOy .
—8 ?—
c("zmc.!‘fc;li:s.1 BALLAS
BACK TO BACK) CIRCUIT _£——..

—1..-_4

cusuNeL 2 E ‘B ALLA°T.
v

(2 GAGES
BACK TO BACK) CIRCUIT
e

TEKTRONIX —

EXT

MOD. §51 DUAL BEAM SYNCH
WITH 2 TYPE L AMP. O @
@ Y@

Y
—e
BALLAST
CIRCUIT

-

CHANNEL 3

—®

BALLAST
CIRCUIT

—e_ @

CHANNEL &

1
inpin

Figure 5. SCHEMATIC OF STRAIN GAGE CIRCUIT

The oscilloscopes were triggered by the strein signal from a gage in
the nominal stress I:ield. This signal was delayed sufficiently to insure
observance of the entire strain phenomenon. The delay may be seen 1in Fig-

ure 4 at the origin of the trace.




The strain gages vere located typically as shown in Figure 6. Four
geges were mounted in the nominal stress field (at two locations on the
surface of the model, and back-to-back). The back-to-back gages were
employed to cancel the effect of pulse variations through the thickness of
the model.* The two locations on the same horizontal line of the plate pro-
vided essurance of pulse orientation and amplitude across the model. The
nominal strain was obtained by averaging the outputs of the two gage pairs.
In all cases the times of pulse arrivel at the two transverse locations
were generally colncident within 1 or 2 microseconds.

*

\ J—

CHANNEL CHANNEL

1
D BOTH
SIDES

2 IR
+

CHANNEL 3 CHANNEL ¥

\/—\—_/_J

CHANNELS £ & 2 - NOMINAL STRAIN
CHAMNELS 3 & & — MAXIMUM STRAIN .

Figure 6. LOCATION OF STRAIN GAGES

Also as shown in Figure 6, two gages were located at the opposite trans-
verse extremities of the hole. Agein, this was done to provide assurance of
pulse uniformity. The orientation of the pulse passage at this location was
essentially horizontal within several microseconds in all cases.

*No strain differences through the thickness were noted, however. The back
gages could be properly omitted with no loss of accuracy.

«10-



Limitations

Response of Strain Gages on Plastics

Clark® has noted that wire resistance strain gages mounted on 1/2-inch-
square bars of CR-39 plastic exhibited only about T75% of the strain sensi-
tivity that would be expected. The effect was noted bdoth statically and
dynamically in relatively close agrecment and was attributed to the wire of
the strain gages stiffening the plastic.

Assuming that this reduction in sensitivity is constant, the stress
concentration factor, being sirply 2 ratio of strains, should be unaffected.
However, since the stiffness of the models at the regions of nominal and
maximum stress differs significently [at least in the static sense), it was
decided to observe this phenonenon for the particular configuration being
studied.

A sheet of HYSOL 6000 OP, a birefringent plastic having physical pro-
perties similar to Plexiglas, was fabricated into a model with the same geo-
metric parameters as the models used in the primary testing phase. The
model was loaded statically in tension and the maximum and nominal stresses
determined photoelastically. After unloading, foil strain gages werc
gpplied as on the dynamic models. The model was loaded again and the maxi-
mum and nominal stresses determined, this time from the output of the strain

gages.

The comparison between these data indicated that the foil strain gages
gave results for both the nominal and maeximum strains which were as close
to the photoeclastic values as could be reasonably expected.

Te fact that the reduced strain sensitivity did not occur in this
study may be due to the use of foil-type strain gages which are not as stiff
as vire gages. In ony event, since Lhe static check showed no significant
loss of strain sensitivity, it is felt that, dynamically, any error vhich
may exist may be properly neglected.

Dynamic Response of Strain Gages

There is some tendency to doubt the validity of strain gage response
to high frequency cxcitation. For example 2 vhile studying the propagation
of plastic waves in soft alumimum, G111lich® noted that resistance strain
gage measurements deviated significantly from diffraction grating readings
at strains above 2%, and at strain rates corresponding to wawve velocities.
However, in the present study, the maximm strains recorded were always much
lower than 2%, generally in the range of 12,000 to 15,000 microinches per
inch.

On the other hand, while Clark® did find a difference in dynamic strains
between strain gage measurements and photoelastic techniques, the identical
difference was observed staticelly.

-ll-



One prevelent criticism of employing strain gages for high frequency
measurements stems from a lack of confidence in the dynamic qualities of
adhesives. While this is, no doubt, an area worthy of additional investi-
gation, it was found in this study that the adhesive bond was generally
excellent and, in practicelly all cases, the gages were found to be secureiy
bonded after the test.

Attenmustion of the Stress Pulse

One of the assumptions made in the fornulation of the equations for the
dynamic stress concentration factor was that the attenuation of the pulse
between the locations of the nominal and maximum stresses could be neglected.
However, the attenuation is actually significant, and it was therefore nec-
essary to apply correction factors to account for the pulse decsay.

A series of tests was conducted on models with no discontimuities, but
otherwise identical to thc models used in the primary testing phase. A cor-
rection factor was determined for each of the model sizes and applied to
the nominal strains. The corrected nominal strains were then employed in
the determination of the stress concentrations.

Using this concept, Equation 3 may be rewritten:

k = = (&)
where -énom is the attenuated nominal strain.

RESULTS AND CONCLUSIONS

The results of this study are indicated in Figure 7*. As may be noted,
there is a pronounced variation of the stress concentration factor with
pulse frequency, particularly in the region of pulses of the same length as
the hole diesmeter, where it drops off significantly.

This may be explained by a purely physical argument of the stress pulse
propagetion. Since the band of stressed material is sbout the same length
as the discontinuity, there is not sufficient time or space for a secondary
pulse to be reflected from the hole boundary and reinforce the main pulse,

*Pao's results for an infinite plate with a circular hole under vibratory
loading (Figure 3, Reference 3) are superposed on this figure. Vhile the
cases examined are somewhat different, the agreement in the trend is sig-
nificant.

-]12=



STATIC VALUE

3.0 joue
>
o — = e = e
\
k z,oL. \ PAO {Ref.3) FOR v = .48
\
X \
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X ~- e
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1.0 [

|
b 2 3 U L]
d
A
Figure 7. VARIATION OF STRESS CONCENTRATION WiTH PULSE FREQUENCY

As the band is diminished relatively to the whole, there is even less oppor-
tunity for reinforcement to occur. On the other hand, for long duration
pulses the band becomes quite large (approaching e static loading condition)
and there is sufficient reinforcement to bring about a high stress concen-
tration factor.

It may be concluded from this study that static criteria are not neces-
sarily velid in the dynamic sense. For the partiruler case considered, the
results applied to a design problem would be striking because not only would
the designer use a conservative static stress concentration factor, but he
would probebly campound the inefficiency by resorting to a heavy margin of
safety.
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